Glacial isostatic adjustment and the radial viscosity profile from inverse modeling

نویسندگان

  • Georg Kaufmann
  • Kurt Lambeck
چکیده

[1] A formal inverse procedure is used to infer radial mantle viscosity profiles from several observations related to the glacial isostatic adjustment process. The data sets consist of Late Pleistocene and Holocene sea level data from Scandinavia, the Barents Sea, Central Europe, Canada, and the far field, as well as observations of changes in the Earth’s rotation and gravitational field, and present-day uplift and gravity changes in Scandinavia. Inferences of mantle viscosity are robust against assumptions such as the a priori viscosity model and model discretization. However, the quality of ice sheet reconstruction remains crucial for the inverse inference. The importance to discuss regional mantle viscosity models in view of the lateral variability in mantle properties has been evident. Our inference suggests a two order of magnitude increase of mantle viscosity with depth, and volume-averaged upper and lower mantle viscosities around 7 10 and 2 10 Pa s, respectively. Mantle viscosity does not need to increase sharply across the 660-km seismic discontinuity. The viscosity profiles suggested are also able to reconcile the large-scale geoid anomaly related to mantle convection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous GPS measurements of postglacial adjustment in Fennoscandia: 2. Modeling results

[1] Data collected under the auspices of the BIFROST GPS project yield a geographically dense suite of estimates of present-day, three-dimensional (3-D) crustal deformation rates in Fennoscandia [Johansson et al., 2002]. A preliminary forward analysis of these estimates [Milne et al., 2001] has indicated that models of ongoing glacial isostatic adjustment (GIA) in response to the final deglacia...

متن کامل

Observation of glacial isostatic adjustment in ‘‘stable’’ North America with GPS

[1] Motions of three hundred and sixty Global Positioning System (GPS) sites in Canada and the United States yield a detailed image of the vertical and horizontal velocity fields within the nominally stable interior of the North American plate. By far the strongest signal is the effect of glacial isostatic adjustment (GIA) due to ice mass unloading during deglaciation. Vertical velocities show ...

متن کامل

Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA)

The poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA) is a major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry and to a lesser extent satellite altimetry. In the past decade, much progress has been made in consistently modeling ice sheet and solid Earth interactio...

متن کامل

Ice sheet and solid Earth influences on far-field sea-level histories.

Previous predictions of sea-level change subsequent to the last glacial maximum show significant, systematic discrepancies between observations at Tahiti, Huon Peninsula, and Sunda Shelf during Lateglacial time (approximately 14,000 to 9000 calibrated years before the present). We demonstrate that a model of glacial isostatic adjustment characterized by both a high-viscosity lower mantle (4 x 1...

متن کامل

An assessment of forward and inverse GIA solutions for Antarctica

In this work we assess the most recent estimates of glacial isostatic adjustment (GIA) for Antarctica, including those from both forward and inverse methods. The assessment is based on a comparison of the estimated uplift rates with a set of elastic-corrected GPS vertical velocities. These have been observed from an extensive GPS network and computed using data over the period 2009-2014. We fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002